
The Missing CS Class
Where We Are & Where We Are Going



What We’ve Been Doing
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Course Logistics

● 1 Unit P/NP

● Offered under ECS 98F - WQ & SQ

● Prereqs: ECS 32C, 36A, or consent

● 50 students WQ / More in SQ

● Instructor of Record: Joël Porquet

● Course materials open-sourced on 
GitHub



Course Content
Debugging

Strategies and tools 
required for successful 

debugging

UNIX

Motivate self-learning and 
further exposure to *nix 

systems.
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Proposed Schedule

10 lectures

1. Course Introduction - Why learn this material?

2. Introduction to CLI

3. Putting  Programs Together with Piping 

4. Testing - Discover faults with scripting and unit tests

5. General debugging strategies

6. Text-interface debuggers

7. GUI debuggers

8. Shell Scripting 

9. Applying Regular Expressions 

10. The Unix Philosophy
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Course Intro

Lecture 1

1. Why learn UNIX and debugging?

2. Course Logistics

Homework: SSH into the CSIF and clone the class repository



Unix Intro - Two Lectures 1. Introduction to *nix and REPL

2. Command line tools for developersIn the order of appearance
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Introduction to CLI & *nix

● Identify discrepancies between *nix and other 

operating systems

● Understanding and navigating the UNIX file system

● Utilizing CLI text editors, i.e. vim

● Using man pages

Homework: TBD
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CLI Expanded

● Understanding Exit Codes

● Unix program philosophy

● Piecing together commands with IO redirection

Homework: TBD



Debugging - Four Lectures
1. Testing

2. Strategies for troubleshooting

3. Text-interface debuggers

4. GUI debuggers

In the order of appearance
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Testing

Fundamentals of 
software testing

1. Identify the need and use of different software 

techniques

2. Testing program output from the command line

3. Unit Testing in C with the assert macro

Homework: Given a set of erroneous compiled functions 

and a description of the intended behavior, write tests to 

discover bugs.
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Debugging Strategies

Generalizable 
strategies independent 
of software

1. Preventing bugs. Proper planning & defensive 
programming

2. Classification of software bugs

3. Concrete strategies for localizing an error

4. Common difficulties in the debugging process

Homework: TDB
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Text-Interface
Debuggers

An overview of 
features

● Formalize the basic features of a debugger

● Debugging C code with GDB

Homework: Debug several small C programs using GDB, 

submitting both fixed code and gdb log.
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GUI Debuggers

● Introduce GUI debuggers and explain their advantage 
over text-based solutions

● Debugging C code using gdbgui

Homework: Harder practice debugging small C programs.



Further topics in UNIX 1. Shell Scripting

2. Regular ExpressionsIn the order of appearance
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Shell Scripting

Automate everything

● Using Bash as a language

● Environment Variables and $PATH, .dotfiles, aliases

● Job and Process Control

Homework: Create a script that will generate a makefile 

with the rules to both compile and run unittests
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Shell Scripting

Automate everything

● Using Bash as a language

● Environment Variables and $PATH, .dotfiles, aliases

● Job and Process Control

● Make?

Homework: Create a script that will generate a makefile 

with the rules to both compile and run unittests

Prereqs: ECS 32C, 36A, consent
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Regex

Wrangling Data

● Why use Regular Expressions?

● Unix Wildcards 

● POSIX Extended Regex 

● Regex in shell scripting 

Homework: Shell Script to trim and organize a large set of 

files based on file type
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The Unix Philosophy

● Introduce general programming tips from the 

founders of Unix

○ Modularity 

○ Clarity

○ Generation 

○ Diversity

○ Extensibility

○ Many more…. 

Homework: Write an autograder 

Rules of thumb for 
programming

Reference: https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html 

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html


What We Still Need to Do
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Reproducible Demos

● Curriculum will be open source and should be 
accessible for educators

● Well documented and reproducible demonstrations 
are a requirement 
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Open Sourcing

● Can’t open source solutions to homework 
assignments

● Using a slide format that is accessible



Thank you for coming!
Questions, Comments, Concerns?


