
The Missing CS Class
Where We Are & Where We Are Going

What We’ve Been Doing

3

Course Logistics

● 1 Unit P/NP

● Offered under ECS 98F - WQ & SQ

● Prereqs: ECS 32C, 36A, or consent

● 50 students WQ / More in SQ

● Instructor of Record: Joël Porquet

● Course materials open-sourced on
GitHub

Course Content
Debugging

Strategies and tools
required for successful

debugging

UNIX

Motivate self-learning and
further exposure to *nix

systems.

5

Proposed Schedule

10 lectures

1. Course Introduction - Why learn this material?

2. Introduction to CLI

3. Putting Programs Together with Piping

4. Testing - Discover faults with scripting and unit tests

5. General debugging strategies

6. Text-interface debuggers

7. GUI debuggers

8. Shell Scripting

9. Applying Regular Expressions

10. The Unix Philosophy

6

Course Intro

Lecture 1

1. Why learn UNIX and debugging?

2. Course Logistics

Homework: SSH into the CSIF and clone the class repository

Unix Intro - Two Lectures 1. Introduction to *nix and REPL

2. Command line tools for developersIn the order of appearance

8

Introduction to CLI & *nix

● Identify discrepancies between *nix and other

operating systems

● Understanding and navigating the UNIX file system

● Utilizing CLI text editors, i.e. vim

● Using man pages

Homework: TBD

9

CLI Expanded

● Understanding Exit Codes

● Unix program philosophy

● Piecing together commands with IO redirection

Homework: TBD

Debugging - Four Lectures
1. Testing

2. Strategies for troubleshooting

3. Text-interface debuggers

4. GUI debuggers

In the order of appearance

11

Testing

Fundamentals of
software testing

1. Identify the need and use of different software

techniques

2. Testing program output from the command line

3. Unit Testing in C with the assert macro

Homework: Given a set of erroneous compiled functions

and a description of the intended behavior, write tests to

discover bugs.

12

Debugging Strategies

Generalizable
strategies independent
of software

1. Preventing bugs. Proper planning & defensive
programming

2. Classification of software bugs

3. Concrete strategies for localizing an error

4. Common difficulties in the debugging process

Homework: TDB

14

Text-Interface
Debuggers

An overview of
features

● Formalize the basic features of a debugger

● Debugging C code with GDB

Homework: Debug several small C programs using GDB,

submitting both fixed code and gdb log.

15

GUI Debuggers

● Introduce GUI debuggers and explain their advantage
over text-based solutions

● Debugging C code using gdbgui

Homework: Harder practice debugging small C programs.

Further topics in UNIX 1. Shell Scripting

2. Regular ExpressionsIn the order of appearance

17

Shell Scripting

Automate everything

● Using Bash as a language

● Environment Variables and $PATH, .dotfiles, aliases

● Job and Process Control

Homework: Create a script that will generate a makefile

with the rules to both compile and run unittests

18

Shell Scripting

Automate everything

● Using Bash as a language

● Environment Variables and $PATH, .dotfiles, aliases

● Job and Process Control

● Make?

Homework: Create a script that will generate a makefile

with the rules to both compile and run unittests

Prereqs: ECS 32C, 36A, consent

19

Regex

Wrangling Data

● Why use Regular Expressions?

● Unix Wildcards

● POSIX Extended Regex

● Regex in shell scripting

Homework: Shell Script to trim and organize a large set of

files based on file type

20

The Unix Philosophy

● Introduce general programming tips from the

founders of Unix

○ Modularity

○ Clarity

○ Generation

○ Diversity

○ Extensibility

○ Many more….

Homework: Write an autograder

Rules of thumb for
programming

Reference: https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html

What We Still Need to Do

22

Reproducible Demos

● Curriculum will be open source and should be
accessible for educators

● Well documented and reproducible demonstrations
are a requirement

23

Open Sourcing

● Can’t open source solutions to homework
assignments

● Using a slide format that is accessible

Thank you for coming!
Questions, Comments, Concerns?

